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Is Mathematical Logic Really Necessary in
Teaching Mathematical Proofs?

By Michael Aristidou”

As it is already observed by mathematicians and educators, there is a
discrepancy between the formal techniques of mathematical logic and the
informal technique of mathematics in regards to proof. We examine some of
the reasons behind this discrepancy and to what degree it affects doing, teaching
and |l earning mathematics in college. We
opinions about proofs, and we briefly ebg the situation in Greek and Greek
Cypriot high schools in which mathematical logic is part of the curriculum.
Finally, we argue that even though mathematical logic is central in mathematics,
its formal methods are not really necessary in doing antitgamathematical

proofs and the role of those formalities has been, in general, overestimated by
some educators.

Keywords: formal, logic, proof, studentteacher

Introduction

In several colleges, some parts of mathematical logic (i.e. sets, poo@dsit
logic, and predicate logic) are usually taught in the early chapters of a discrete
mathematics class, in order to prepare the students for the important chapter on
proofs and proving techniques. Yet, most likely, students have already been
exposed toproofs before the aboweentioned course in other mathematics
courses or even in high school. Mathematical logic is to sharpen the logical and
analytical skills of a student as these are necessary for the understanding and
learning of mathematical proofglathematical logic though is characterized by its
symbolic presentation and formal rules. Mathematics, on the other hand, combines
mathematical symbolism and natural language and its methods are rigorous yet
less formal.

Historically, logic is associatedith Aristotle and his work th@rganon in
which he introduced terms likgropositions and "syllogisms, the basics on
categorical and hypothetical syllogism, and modal and inductive logic. It is also
associated with the Stoics and their propositiongiicl and their work on
implication. Syllogistic logic and propositional logic led later to the development
of predicate logic (or first order logic, i.e. the foundational logic for mathematics)
by Frege and Hilbert in the 8entury. As Ferreiros said:

"Firstorder logic emerged as an analysis of the most fundamental basis for the notion
of mathematical proof. To put it otherwise, it emerged as the logic that is necessary

"Associate Professor, Aerican University of Kuwait<uwait.
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and sufficient for codifying mathematical proofs, axiomatizing mathematical
theories, and studying their metathebiffzerreiros2001 p. 479

Predicate logic is also the foundation of modeathematical logic. The
latter is a subfield ahathematics that includes fields such as set thewgel
theory ancdproof theory, and its priary interests are tHeundations of
mathematics anttheoretical computer science.

The interest in the foundations began in tHE &@turywith the development
of axiomaticframeworks folgeometry and arithmetic by Hilbert and Peano
respectively. That t in the early 2D century to three main philosophies
regarding the foundations of mathematics, namely Logicism, Formalism and
Intuitionism, none of which adequately accounts for those foundations. Goédel
pointed out the issues of consistency and comm@sserelated to provability in
general formal systems. Nevertheless, most mathematics can be formalized in
terms of sets, and set theory serves nowadays as its foundation. In real
mathematical practice though rarely one adheres theetetical foundatiato
validate or refute mathematical questions. Each mathematical field has its own
tools and methods and with general logical framework the predicate logic explores
its own questions, proves its own theorems, and establishes connections between
fields. Even though mathematical logic is central in mathematical practice, its
strict symbolism and formal rules are rarely used in mathematics, whose
mathematical symbolism, language and methods are rigorous yet less formal.

In the subsequent sections, we willkaa the differences between the formal
techniques of mathematical logic and the informal techniques of mathematics in
regards to proof. We will examine how it affects doing, teaching and learning
mathematics, give some examples, and present some cdllaggl® nt sd opi ni ons
about proofs. We will also see what/when logic is taught in Greek and-Greek
Cypriot high schools as it is part of the school curriculum.

What is Mathematical Proof?

Even though there is no complete agreement among mathematicianston wha
constitutes a mathematical proof, it is accepted by most that proof is a central
activity in mathematics. A proof is basically a line of reasoning that mathematicians
would employ in order to convince someone about the truth of a mathematical
statementA mathematical proof is usually written in an algerbsaimbolic form,
mixed with natural language, and it has among others the following basic
objectives: (ayerification, (b) discovery, (c) explanation, (d) communication, (€)
challenge, (f) systematitzean. This is what is usually characterized"agormal
proof* and what most practicing mathematicians usually do and understand as
proof. As Hersh says:

"Practical mathematical proof is what we do to make each other believe our
theorems. (Hersh, 1997p. 49)
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A proof also could be fphrased, proved differently, refined, completed, etc.
All the above play a crucial role in the mathematical progress.

Students often learn about the different types of proof techniques, such as
direct proof, proof by caseproof by contradiction, etc., which are based on some
basic logical rules of inference such as modus ponens, modus tollens, resolution,
etc., and their extensions in predicate logic.

Example: If nis an odd integer, then is odd.

Proof: Letn be anodd integer. Then, there exists an intdgauch thah = 2k + 1.
Squaring both sides of the equation, we have that:

= (Xk+1F =4+ 4k+1=22%+ %) +1 =2+ 1, wherel = 2 + 2k.
Hence, by the definition of odd, we have thfais odd.

The above proof is a typical (informal) mathematical proof, and is based on
the modus ponens. That is, on the logical schema:

"x[0(x) - O(x*)]
O(n)

eééé

\ 0(n?)

whereO(x) ="x is odd' and xl Z.

What about'formal proofs"? A formal proof (derivation)s a sequence of
steps where from a given set of sentences (premises) one derives another sentence
(conclusion) usig the logical rules of inference. A formal proof has more of a
syntactic nture, than semantic and emplaeductive reasoning rather than other
forms of reasoning. It is highly rigorous, recalls all relevant axioms and
definitions, uses and manipulategital symbols, and emphasizes the verification
aspect of a proof, and not so the explanatory aspect. So, the previous example
would be written formally as follows:

Example: If nis an odd integer, then is odd.

Proof: 1. O(x) Emise
2. $2(x=22+D1 gefinition of odd
3. X=2m+13 existential instantiation
4 X =FAAT+2A)+1 5 algebra

5. x*=2z+1 4, existential generalization
6. O() 5, definition of odd

2
7. 0 - O(x%) 1-6, modus ponens

g. "X[0(¥)- OO 7 yniversal generalization
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Notice that some mathematicians claim that a proper proof is actually the
formal proof, or at least that an informal proof is acceptable if a formal proof could
in principle be constructed. As Rota says:

"A proof of a mathematal theorem is a sequence of steps which leads to the desired
conclusion. The rules to be followed by such sequence of steps were made explicit
when logic was formalized early in this century, and they have not changed since.
(Rota,1997, p.183)

Finally, formal proofs are usually checked and constructed using computers
and they are quite long (see Figure 1) and time consuming. For example, the proof
of Keplerbés Conjecture by Hal(dages& n 2006 was
Ferguson2006, and it tooka group of 22 people more than 10 years to formalize
the proof(Hales et al., 2007

Figure 1. The proof of the irrationality of/2 in proof assistant Isabelle

Muain theorem

The square root of any prime number {(including 2) is irrational.

theorem sgri-prime-irrationel: p € prime == sqrl (veal p) & O
proof

assuime p-prime; poe prime

then have p: T < p by (simp add: prime-def)

assume sgrl (read p) €

then obtain m » where

n: n # 0 and sgri-rat: |sgri (real p) real m f real n

and grd: ged lm, n) = ..
have eg: m” ERS
proof
[rom v and sgri-rad have reel m |seprt (veald p)| = veel n by simp
then have real (m®) (sgrt (real p))° # real (n)
by {auto sitnp add: power2-eqg-square)
also have (sgri (real p))° real p by simp
also have ... % real (n”) veal (p o+ n') by simp
finally show “thesis ..
el
have p dud wm A p ded o
proof
from eq have p dvd m* ..
with p-prinme show p dud m by (rule prime-dud-power-tuwo)

then obtain & where m oo ko
with eg have p =+ n~ P~ % k7 by (euto simp add: powerZ-eg-square muli-ac)
with p have ™ — p = &7 by (sirep add: power2-eq-squore )

then have p dod n” ..

with p-prime show p dud n by (rule prime-dod-power-tan)
qed
then have p ded ged (e, n) .
with god have p dwd I by stinp

corollary sgri (real (2::nat)) ¢ I

by (rule sgri-prime-trrational) (rule two-is-prime)

Source: Wenzel& Paulson, 2006, g2-43.
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Issues with Formal Logic

Comparing the two proofs in the example above, one can see some
quantitative and qualitative differences. First, the second proof is a bit longer and it
can get much longer when the theorems get more interesting. Then, one notices
that the second proof ®ot very explanatory or communicative. It is intended to
deductively verify the theorem, and it reminds of a computer program. As a matter
of fact, if the above proof were compuperformed, it would also get even longer
as one would be required to inpaiso all necessary definitions, axioms and
calculations, in order to arrive to the conclusion. Finally, the second proof is not
the way that mathematicians do and publish proofs in their field, neither is the way
they teach their students in mathematiesses.

But why is that? There are sevaedsons. We outline some below.

Epistemic Reasons

On the practical level, making proofs unnecessarily longer, less readable, and
harder to communicate, does not benefit the students or the teachers in terms of
knowledge. Since proofs are central to the development and transfer of
mathematical knowledge, they should be in a format that most understand, so
students or teachers can communicate it to others and motivate discussions that
could lead to further discoves. On the theoretical level, could all mathematical
statements be formalized and proved? Gode
some serious restrictions on provability within a formal system that is large
enough to handle basic mathematics. Marfori @sgquite convincingly that
formal understanding of prodfyields an implausible account of mathematical
knowledge, and falls short of explaining the cass of mathematical practice
(Marfori, 2010, p.261). She raises two important objections: one refgrto the
circul arity of t he noti on of ri gorous [
explanatory power with respect to ordinary mathematical practice.

Not Just Deduction

Even though deductive inference is central in proofs and in mathematics in
general, ti is not the only type of inference in mathematical practice. Peirce
considers three kinds of logical inference, namely deductive, inductive and
abductive, which he sees as important stagesathematicainquiry (Bellucci &
Pietarinen, 2018 Certainly,deduction allows one to move from some hypotheses
to a conclusion, but hypotheses and conjectures must be formed in the first place.
That can be done by induction and abduction by looking at some specific
examples first, draw analogies, and then genergliZdeduction, in mathematical
inquiry, usually comes at the last stage as a way to verify certain observations.
Polya (1954; 1973) and Lakatosl976 explain the process of mathematical
discovery very clearly. For example, Polya lays down some stepsearaj
problem solving that include: understanding the problem, experimenting,
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conjecturing, generalizing, trying to prove and proving or disproving. The steps
before the proving step are what one would call the inductive/abductivé stage

Intuition also Necessary

Clearly, logic is necessary for doing mathematics. But is it sufficient? As
Hadamard said:

[ é] strictly speaking, there is hardly any
intervention of intuition issuing from the unconscious is necessargsittteinitiate
the logical work' (Hadamard, 1954, 412

In a completed proof, formal or informal, one rarely sees all the mathematical
activity that preceded the proof. That activity might have included scattered
thoughts, incomplete notes, calculaBp drawing diagrams, experimenting,
moments of inspiration, several failures, frustration, etc. All these activities are
sometimes part of the mathematical process, yet they are not part of the logical
process. And they are not characterized by the deduntiture that usually
characterizes a proof. A proof seems to comprise all the above in an end result
argument, and comes after the discovery. And, in genegat,seems to merely
follow intuition.

Not all are Computer Scientists

In a computer sciercclass, logic is covered not only to serve as a problem
solving tool, but also, as Hein says:

“lé] for its wuse in formal specification of |
and for its growing use in many areas such as databases, artificiéyenoe,

robotics, automatic reasoning systems, and logic programming langugdgs,

2010, pvi)

Formal proofs are also covered, usually after informal proofs have been
covered. As important as Heinbdés topics may
in a mathematics course, even in a discrete mathematics course which is
prerequisite to computer sciende. mathematics course the emphasis falls on
informal proofs, their structure and the information they convey, the relation of the
proved theorems tother theorems, examples, historicals, and, of course, some
applications to other sciences.

'Polya also explains the difference between induction and mathematical induction (a deductive
process) and gives a nice example applyintihalpreviously mentioned stefi®73, p.114121). In
particularly, he proveshe theoremiThe Sum of the Firat Cubes is a Squdreshowing all the
previous steps and activity that led one to the theorem, doing calculations, using visuals, forming
conjectures, etc.
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Some Objections

With the advancement of computers, programming and computer algebra systems
in particular, some argue for the use of formal techniques in maties for
philosophical but also pragmatieasons. For instance:

"-To establish or refute a thesis about the nature of mathematics or related questions
in philosophy.

-To improve the actual precision, explicitness, and reliability of matherhatics.
(Harrison, 2008p. 1395)

Regarding the first point, Harrison justifies the formalization of mathematical
proofs by appealing to the foundations of Mathematics. As he says:

"[ é] the defining characteristic of mat h e mas
Reasoning proceeds from axioms (or postulates), which are either accepted as

evidently true or merely adopted as hypotheses, and reaches conclusions via chains of
incontrovertible logical deductiorigHarrison, 2008, @395

As Harrison continues, ithe past, informal methods caused ambiguities and
erroré, and informal proofs bearing the burden of being explanatory lost rigor and
precision. Hence, it is only natural to utilize the deductive nature of mathematics
and strive for formalizing proofs ammesenting them in ‘&igh-level’ conceptual
way. This way, there are no issues of uncertainty or errors and one is sure of what
has been proved from given assumptions. A computer program could take over
this process, as it has already done for severatdhes, and help tremendously
and change the mathematical practice.

The only problem though is that Harrison puts mathematics on narrow
foundations. Mathematics is more than just deduction of statements and proof is
just one of the stages in the mathenahtixtivity’, as Lakatos1976 and Polya
(1954; 1973 nicely documented in their classic works. Also, as many
mathematicians explain, axiomatization usually comes at the end of the process
and not the beginnin@ellucci, 2002.

Now, regar di segnd lpant, rhe pantsots the fact that
mathematics is applied in society so issues of precision and reliability in
mathematics, as well as computer science and engineering, are important as they
can have pragmatic consequences. Hence, it is paramountndhaonly
mathematics should be checked for correctness by computer programs, but also
computer programs should be checked for correctness as well. Harrison recognizes
the difficulties in this, since computer premdrrectness programs could be usually
long and tedious with few people understanding them, yet, as he claims, that
should not be considered as an argument against formal verification of a proof. To

‘Harrison mentions DoAIl amber orénsof Mlgabrasnd74p.Omeof of t he
could add Gauss6 incomplete first proof in 1799 of
3A nice presentation of that using the quaternions as an example is in Papatt9@gesvhere

the author shows the interplay of observation, experiientamagination and proof infamous

mathematical discovery.
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the contrary, he suggests that we should invest and improve evenoonor
computer methods.

But, the question of reliability still stands, and if the point is to be sure of a
proof by mechanically checking it, then how can one be sure of the program that
checks the proof? Considering that computer checking is long and tedious,
certainly longer and haed than human checking, does not that defeat the purpose
of demanding efficiency? For exampl e, t he
quite long and few mathematicians have read and understood it. Some could have
doubts regarding its validity, correctnest;., and that is quite understandable.

But, writing a complex program ten times longer, that also few people understand
it, in order to check the theorem, is it something reasonable to pursue? Why not
giving incentives, as one could suggest, to say tethamaticians irhumanly
verifying the proof?

The first automated theorem prover, known as'tlugic Theory Machiné
was devel oplydewellrandtSimeri19660 I6 nsimicked the logical
skills of a human, but it dealt only with theorem provingrferopositional logit
The first computer proof assistant i n math
and Haken in the proof of The Felrol or Theorem (i mproved 1in
Robertson et al.), in which a large number of case checking and calculadi®ns w
done by the computer. That caused a big controversy on what ultimately a proof is
and whether computer proofs could be considered proofs. In 2005, Gonthier
(2005; 2008 gave a formal proof of the Fo@olor Theorem using the proof
assistant Cog which auo mat es t he whol e proof process
Hal es gave a | arge computer assisted proof
mentioned irpreviously he proved in 2006 and formally proved in 2017 using the
proof assistant HOL Light. About ortfeundred other important theorems were
formalized, including some in the undergraduate level (e.g. the Fundamental
Theorem of Calculus). So, advocates of formal proof would say that this practice
is doable and useful, and a natural part of the sciengifieldpment and progress.

But, even though there is no doubt that these are important logical and
technological achievements, all the above formalized proofs still remain
philosophically controversial. First, one must distinguish between proof verificatio
and proof discovering. Proof assistants are formal syntactical systems based on
deductive logic that can be used to check whether a set of premises imply a
conclusion, independently of content and semantics. Discovery requires more than
logical deductionfor example observation, intuition, etc., and not all proofs are
deductive. Finally, even though important theorems have been formalized, it does

“For example, it proved several theorems flem s s e | | ' s  aRridcipid\Wathéneticae a d 6 s

Another interesting program was Lenat's program AN [lathematiciah) in the 706s, whi c
exhibited also some creative behavior as it was based on some general heuristics. Nevertheless, AM

has its drawbacks too. See more here: https://bit.ly/2Z4fSEa

®Such as, the First Incompleteness Theorem (by Shankar, -Bogee system, 1986), the

Fundamental Tlerem of Calculus (by Harrison, HOL Light system, 1996), the Fundamental

Theorem of Algebra (by Milewski, Mizar system, 2000), the Prime Number Theorem (by Avigad et

al., Isabelle system, 2004), the Four Color Theorem (by Gonthier, Coq system, 2005 theeKe 6 s

Conjecture (by Hales, HOL Light system, 2017), étéiedijk, 2008; see alsdttps://bit.ly2MVO

09D).
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not mean thaall theorems can be formalized (Harrison, 2008, p. 1418I)
There are also technical issugkich are not in accordance with mathematical

1

practice. For example, HOL Light and Mizar systems define , even though
it i's actually wundefined, because the s
"undefined and the algorithms requies input in order to ru(Wiedijk, 2009.

In Class

The emphasis given on the foundations of mathematics in the first half of the
20"century and the rise of programming, autom
that we described in the previous sectiaturally affected education as well. As
Hana says:

"The hallmark of the mathematics curriculum adopted in the sixties was an emphasis
on formal proof. Among the manifestations of this emphasis were an axiomatic
presentation of elementary algebra and emed classroom attention to the precise
formulation of mathematical notions and to the structure of a deductive system.
(Hana, 1989, ®0)

This"new mathemati¢cs as it was wusually called, we
Hana (1983 1989) Kitcher (1984)Davies (1986), Tymoczkadl 986 and others,
and educators we forced to modify the curriculurredighasizing formalities,
rigor and proof, and emphasizing more examples and applications. It has been
debatable since then, if that was the right approachtibatcshad been followed,
as complains were raised later regarding the coherence of the material taught and
the impact of reducing rigor and proof had on the critical skills of the students.
But, what did some empirical studies show? O&869 found thatteaching an
explicit unit on | ogic did not have any
prove gemetric theorems. Cheng at &986 found that college students who
took introductory logic had no advantage over students who did not take the
coursei n sol ving the Wasonodés Selection Task,
i mprove studentsd reasoni (h9?)aacdMutllert i es. On
(1975 showed that teaching logic was beneficial to geometry students, especially
if the logic was cwered in context. Also, Durar@uerrier and Arsa¢2009),
DurandGuerrier et al(2012 and Epp(2003; 2009 claimed that logic is a useful
tool in mathematics, yet it should be preseritech manner that continually links
it to language and to both reabrld ard mathematical subject mattéEpp, 2003,
p. 895) Similarly, as Durandsuerrier et al. saidjteaching logic as an isolated
subject generally appears to be inefficient in developing reasoning abilities
(DurandGuerrier et al., 2012, B75.Hene, it seems to me that a safe conclusion
to be drawn from the above is that logic is useful but it should be done in context.

In my experience from teaching discrete mathematics, | certainly see the
relevance of logic to mathematics, but | also noticeddhowing:
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a. Students have conceptual difficulties with the semantics"(@g."- ",
etc.) and the scope of propositional logic. For example, some of the
connectives seem ambiguous or 4sensical. In particularstudents
struggle with the conditiondl- " and its truth valués The fact that
propositionsp andq could be false yet the propositidh™ 9 is true is
not something that the students can empirically easily accgmcially
whenp andq are unrelated. And justifiably so. Neither this logical fact is
something that the students use much in proper proofs. Because in
mathematical proofs, we are mainly interested in starting from true
premises and arriving at true camgibns and in starting from true
premises to false conclusions when disproving. The case when the
premises are false is usually deemed irrelevant.

b. The formal aspects of logic are quickly dropped, as they are unnecessary.
Students have already difficulti®gth informal proofs, so adding extra
formalities and complicating things even further seemspauakagogical.

Even the few logical rules the students need for mathematical proofs could
be summarized and included in the beginning of the proof sectiomuvith
much harm done. Much of the previous material, especially on
propositional logic, could easily be omitted. One could simply start with
minimal logical rules and the basic axioms of the subject being studied
See Suppes, 1965

Regarding (b), and meated by some of the research done already, we also
asked some of our studentsd input on the
guestionnaires given to 45 students in two discrete mathematics courses, we asked
their opinions on some issues related to foramal informal proof and recorded
their responses (see Appendix). In particularly, in Questionnaire A, students were
given a formal and an informal proof of the same theorem and were asked which
they find more rigorous, which they understand better, wkichare explanatory,
etc. In Questionnaire B, students were given a pictorial proof (without words) and
an informal proof of the same theorem and were asked the same questions as
above. Their responses are summarized in thieTa

Table 1. Responses tdé Questionnaires

Questionnaire A Question 1 Question 2 Question 3 Question 4
Proof 1 88.8% 91.1% 84.4% 22.3%
Proof 2 11.2% 8.8% 15.6% 77.7%
Questionnaire B Question 1 Question 2 Question 3 Question 4
Proof 1 4.5% 6.7% 22.3% 26.7%
Proof 2 95.5% 93.3% 77.7% 73.3%

®More on the'paradoxesof the conditional see Lewis (1917); Farrd®{9; Mansur 2005. Also,

for studentso6 di f fliseeHoyles and Kiehemaiip00d; iRemam @amdd i t i on a
Strachota (2016)

"An important issue could be raised here, on whether content matters in teaching proofs.
According to some educators it does. See S&di7).
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Surely, one could observe the following:

1.

Indeed, the sample was small (45 students) and the conclusions are simply
suggestive, not conclusive. Nevertheless, as the survey was more qualitative than
quantitative, and many studemtgplained the reasons for their responses, we do
get a clear glimpse of their opinions on proof.

In Question A.1, contrary to what one would expect, most students found Proof
A.1(informal proof)more rigorous than Proof A.2 (formal proof). Considering
thar comments, an explanation for that could be that the students relate rigor with
understanding. Something that they do not really understand clearly, it is perhaps
pointless to deem it as rigorous. Similarly, in Question B.1, students stated that
Proof B2 (informal proof) is more rigorous than Proof B.1 (pictorial proof) due to
the use of algebra.

In Question A.2, overwhelmingly most students found Proof(iafdirmal proof)

more explanatory than Proof A.2 (formal proof). As many students explained the
first proof is easier to follow and understand and shorter. Similarly, in Question
B.2, students stated that Proof B.2 (informal proof) is more explanatory than
Proof B.1 (pictorial proof) due to the use of algebra, words, etc. On the contrary,
in an older gestionnaire (see Questionnaire C, in Appendix), more students
found the Euler Diagram more explanatory than the formal proof in
understanding the validity of an argument.

In Question A.3, most students found Proof A.1 (informal proof) more prompting
to explore further similar questions than Proof A.2 (formal proof). Although not
many clear reasons were given for that, some students stated that the informal
proof was easier and the same reasoning could be used to deal with other similar
questions and buil similar examples. One student said that algebra related to
everything in mathematics, so it was a better tool to explore things further than
diagrams. Similarly, in Question B.3, students stated that Proof B.2 (informal
proof) was more prompting than Bfd.1 (pictorial proof).

In Question A.4, most students found Proof A.2 (formal proof) more appropriate
for computers than Proof A.1 (informal proof). As some students said, that is
because the formal proof follows order and is written line by line, hwhic
perhaps their way to say that it is more deductive. On the other hand, in Question
B.4, students said that Proof B.2 (informal proof) is more appropriate for
computers than Proof B.1 (pictorial proof) because computers do not understand
images and pfer symbols.

Overall, students found the informal proof more rigorous than both the formal
and pictorial proofs. More rigorous than the formal proof because it did not
contain unnecessary information and formalism, and more rigorous than the
pictorial preof because it contained essential information, notation and
explanations. It seems that the students followed the middle ground. Also, the
students found the informal proof more explanatory than both the formal and
pictorial proofs. Apparently, even a nmmal use of natural language plays an
important role in understanding, as only symbols or figures are not enough.
Finally, most students believe that more precision, order and symbolism relates
more to computers.
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Logic in Greek and Cypriot High Schools

What is the status of logic in Greek and Cypriot high schools? In Greece, at
the end of the T®century logic was taught in high schools but it had a more
theoretical than analytical nature. It emphasized syllogistic logic and lacked
symbolism. Even thah it mentioned proofs (deductive and inductive proofs) the
examples did not usually come from mathematics, with some exceptions from
geometryAlso, logic was not part of introductory sections in mathematics books.

Figure 2. A Logic Book for Greek Higtschools from 1906

A O1 ] I 11

S(;urce: é&iiros, 1906.

In the708 0 6 s | ogi c, as we cover it today,
mathematics books usually as an introductory chapter. It covered the basics on
propositional and predicate logic, and the examples wetkematical. Proofs
were covered and, interestingly, they were something between the formal and
informal proof that we elscribedsee Figure 3).

Figure 3. TheProofof theSame Exampleve MentionedPreviously
ITAPAAEIIMA
Na axoderyfel on: «To teepayove xdfe mepietod guoikot appod civan
REPLTSOGH, TTOU avadiaTvmaviTen ws fEns:
vxelN, (x mprrrds) = (x? mepiTrds).

Axddaan

(1) x meprTTOS [umrdeon)

() Ywndpye v N vétoio, wove X = 2w+ | [oprouds mepiTTOU]

(3) xl= v+ i)=44v+1 =22+ 2v) 41 [yvword amé Tny
AdyePpa)

(4) x* mepiTTes [opropds mepirrol)

Source: Varouchakis eal., 1983, p.26.

A proper logic text is a book by Kyriakopoul{¥977), in which propositional
and predicate logic is covered inall detail and all important connections to
mathematics are mentioned. As a matter of fact, in regards to our discussion on
formakinformal proof hee, Kyriakopoulos interestingly stafetiat:

[ é] i n mat hemati cs, the proofs of propositi
formal proofs, that we saw in the previous chapters. Formal proofs are long and

therefore, not only cumbersome, but also timesoming. Due to that and because in

mathematics logic is considered known, in the proofs of propositions of a

%My translation.
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mathematical theory, not all steps are mentioned and the logic rules are not
particularly emphasizet(Kyriakopouos, 1977, p. 16Q.70)

Nowadays elements of logic are included in an introductory chapter of
Andreadakis et a(1999 in the 4" year in high school, but are usually omitted.
Some methods of proof (direct and by contradiction) are discussed in chapter two
of the same book. In thé"ear of high school, several proofs in number theory
(including induction) are covered in chapter four afafopoulos et al1098.

Finally, in the & year of high school, there is an optional logic course
(Anapolitanoset al, 1999 which is not mathent&ally oriented and is never
taught.

In Cyprus, a relatively extensive chapter on logic and proofs was introduced
in high schools in 2017. That was a signi
not covered and few proofs were done in high s¢h@blechapter is covered in
the 8" year of high school, in chapter one of Demetriou d28lL7]. As it is stated
in the book®:

"The book has a twimld role to fulfill: to introduce the student in the syllogistic that

is expressed by the unsurpassable lemidactive system of mathematics and also to

respond to the modern mathematical demands. All the material included in the
present book, [ €] is intended onthet he one h
mathematical logic and thought and on the othemtdribute to themathematical

education of the amtry." (Demetriou et al., 2017)

| am not sure if the book achieves its objectives and it certainly has its
problems'yet it |l ooks |ike a step in the rig
state of affas. It contains informal proofs, it does not distract student with
unnecessary logical formalities, and it is kept relevant to mathematics.

It seems that Greek and Gre@ypriot curriculums are diverging regarding
logic, but convergingegarding proof. &am not aware of what, if any, studies were
considered in order to decreasemmrease logic in the two curriculums and what

‘Before the 8 basisally folloyipg thesGreakaeducational system and books.
Some Greek books are still used in Cyprus even today.

%My translation.

YFor a book with twelve authors much more was expected. It was criticized unofficially on the
Facebook grouplaOnuazicoiKonpov (Cyprus Mathematicians) in 2017. The text feels that it was
written in a rush and contains some mistakes. For example, negations of quantified propositions are
poorly discussed (p.23), there are omissions whether a numibrealisor "integet in examples

(p-11), numerical errors (p.13), etc. There seems also to be a confusion régaaiogition$ and
"propositional functioris (p.24). Kyriakopoulos also points out to a misunderstanding of
"necessatyand"sufficient' conditonsinare x ampl e t hat uses Bernoullids I n
above and some suggestions/corrections are included in an unpublished article by Theodoros
Tsaggaris, posted in the group above in 2017. | am not aware if some or any material in the book
were improed later.
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objectives are expected to be achi¢tedevertheless, it does not seem to me that
either curriculum is aware of the conceptualsggbptween propositional logic and
mathematics. Truth tables and syllogisms are not very useful when we prove
things in mathematics. Propositional logic is at béstarm ug to the predicate

logic, which is indeed the appropriate logic for mathematias,sawveral things

from the former could be omitted. From predicate logic some things are important
and could perhaps be covered before the section on mathematical proofs. The two
curriculums though do keep the formalities to a minimum, since increasing the
formalities in proofs, as we argued, does not improve proof doing or understanding
and it might even hinder mathematical experience and process.

Conclusion

The basics of predicate logic form the foundatiomathematics and proof
lies at the heart ahathematical practice. Yet, even though mathematical logic is
required in mathematics, its strict symbolism and formal rules are rarely used in
mathematics whose mathematical symbolism, language and methods are rigorous
yet less formal. The difference dfeise two approaches (formiaformal) affects
doing, teaching and learning mathematics. Some argue that a proof is complete
only if it is done formally. Others insist that requiring formalities actually inhibits
mathematical activity and progress. Formabgb checking and verifying is
tediously long and is nowadays done by powerful computer programs with
minimal errors, but we are still far from computerized proof making. Some also
doubt whether formalizing mathematics serves any mathematical or pedhgogica
purpose.

In class experience from teaching Discrete Mathematics showed that some of
the sections and some of the formalities of logic, taught usually in the beginning of
the course, are not necessary for the subsequent important chapters on proof. Also,
empirical evidence from studentsO respons
studentgelate rigor with understanding and not formalism. They related formalism
more to computer reasoning and natural language to human reasoning. As students
also found infomal proofs more rigorous than pictorial proofs, because it
contained essential information, notation and explanations, it seems that the
students followed a middle ground indicating that even a minimal use of natural
language plays an important role in arstanding as only symbols or figures are
not enough.

2As we have seestudies in general are not in agreement on the relevance of logic in mathematical
understanding and performance. The Greek studies on this topic are scarce, and | found only few
related articles on proof mainly from the Pratiags of the % and 6' PanHellenic Conferences of

the Union of Researchers in Mathematics Educatio&@g ). The most relevant article | found

was an unpublished and undated article entltiHdte Role of Logic in Teaching, Learning and
Analyzing Proof by Morou A. and Kalospyros N., which most likely was written after 2008. The
authors examinéwhetherstudents in upper secondary schools can improve their reasoning and
proof abilities by taking an introductorcourse in logic"'(Morou and Kalospyrds and they
conclude that they could. | contacted the authors for more details, but | never receivedseresp
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Finally, what is the situation regarding logic in Greek and Gegiiot high
schools? We traced historically the curriculum changes regarding logic from the
19006s and we saw dk@yprotcircuduenyare@iveegmck and Gr
on the teaching of logic, but converging regarding proof. Neither curriculum
seems to be aware of the conceptual gaps between logic and mathematics, and it is
unclear whether they achieve their objectives. Neverthéletsinclude logic as a
chapter in a mathematics course, keeping it relevant to mathematics and keeping
formalities to a minimum.

Acknowledgments

The author would like to thank Andrei Zavaliy and George Chailos for their
valuable comments on the papklohamad Abdallah for his help with the class
data collection, Theodoros Tsangaris for his comments on theMbatbkmatics
B’ Lyceum, and Babis Stergiou and Christos Lefkonitziatis for communicating to
me some of the curriculum historicals related tqotuger.

References

AdamopoulosL., ViskadourakisV., GavalasD., Polizos G., & Sverkos A. (1998).
Mathematics B’ Lyceum. Athens ITYE.

AnapolitanosD., GavalasD., Demis A., DimitrakopoulosK., & KarasmanigV. (1999).
Logic: Theory and Practice. Athens ITYE.

Andreadakis S., KatsargirisB., PapastavridjsS., Polizos G., & Sverkos A. (1998).
Algebra and Elements of Probability. Athens ITYE.

Aristotle (2012) The Organon In The Works of Aristotle on Logic, R.B. Joneged.).
Translationsby E. M. Edghill, A. J. Jenkinson, G. R. G. Mure, W. A. Pickard
CambridgeCreateSpace Independent Publishing Platform.

Bellucci, F, & Pietarinen, A.V. (2018)Internet Encyclopedia of Philosophy. Retrieved
from https://bit.ly/2PaYuy7

Cellucci, C. (202). Introduction tdrilosofia e Matematicdn 18 Unconventional Essays
on the Nature of Mathematics, R. Hersh(ed.) 17-36. NY: Springer.

Cheng, P.W., Holyoak, K.J., Nisbett, R.&.QOliver, L.M. (1986). Pragmatic vs. Syntactic
Approaches to Training Deictive Reasoningognitive Psychology, 18, 293-328.

Davies, P. (1986). The Nature of Pro&froceedings of the 5" International Congress on
Mathematical Education, edited by M. CarsNY: Springer.

Deer, G.W. (1969)The Effects of Teaching an Expliciz Unit in Logic on Students’ Ability
to Prove Theorems in Geometry. Doctoralthesis Florida State University.

Demetriou, T., loannou, ., Karandanos, D., Konstantinidis K., Loizias S., Matheou, K.,
Papagiannis K., Paragiou, Th., Sergidis, M., Stilianay, Timotheou, S.,&
Hatzigeorgiou, E. (2017).Mathematics B’ Lyceum, vol. A. Nicosia Pedagogical
Institute of Cyprus.

DurandGuerrier, V, & Arsac, G.(2009). Analysis of Mathematical Proofs: Some
Questions and First Answeta Proof and Proving in Mathematics Education (ICMI
Study 19), G. Hanna,M. De Villiers, F.L Lin., & F.J.Hsieh (ed), 148153 The
Department of Mathematics, National Taiwaoridal University Taipei, Taiwan

113



Vol. 7, No. 1 Aristidou: Is Mathematical Logic Really Necessary in ...

DurandGuerrier, V., Boero, P., Douek, N., Epp, & Tanguay, D. (202). Examining the
Role of Logic in Teaching Proofn Proof and Proving in Mathematics Education
(ICMI Study 19), G. Hanna, M. De Villierged), 363-389.NY: Springer

Epp, S. (2003). The Role of Logic in Teaching Prodfe American Mathematical
Monthly, 110(10), 886-899.

Epp, S. (2009). Proof Issues with Existential QuantificatlanProof and Proving in
Mathematics Education (ICMI Study 19), G. Hanna, M. De Villiers, F.L. Lin& F.J.
Hsieh (eds.), 154159 The Department of Mathematics, National TammMNormal
University Taipei, Taiwan.

Farrell, R.J. (1979). Material Implication, Confirmation, and Counterfactdaliee Dame
Journal of Formal Logic, 20(2), 383-394.

Ferreiros, J. (2001). The Road to Modern Log@iee Bulletin of Symbolic Logic, 7(4),
441-484.

Gonthier, G. (2005)A computer-checked proof of the Four-Colour Theorem. Retrieved
from https://bit.ly/2TwOOXT

Gonthier, G. (2008). Formal ProefThe FourColor TheoremNotices of the American
Mathematical Society, 55(11), 13821393.

Hadamard, .J (1954)The Psychology of Inventionin the Mathematical Field. Dover
Publications.

Hdes, TC., & Ferguson, S.P. (2006). The Kepler Conjectuiscrete and
Computational Geometry, 36(1), 1i 269.

Hales, T., Adams, M., Bauer, G., Dang, D.T., Harrison, JHoang,T.L., Kaliszyk,
C., Magron, V.McLaughlin,S., Nguyen, T.T., Nguyef,.Q., Nipkow, T., Obua, S.,
PlesoJ., Rute, J., Solovyed., Ta, A.H.T., Tran, T.N., Trieu, D.T.,Urban,J.,
Vu, K.K., & Zumkeller, R. (2017). A Formal Proof of the Keplemi&ture Forum
of Mathematics, Pj, 5(e2), 1-29.

Hana G. (1983) Rigorous Proof in Mathematics Education. Toronto: OISE Press.

Hana, G. (1989). More than Formal Prdedr the Learning of Mathematics, 9(1), 20-23.

Harrison, J. (2008). Formal ProefTheoy and PracticeNotices of the AMS, 55(11),
13951406.

Hein, J. (2010)Discrete Structures, Logic, and Computability. Boston Jones and Bartlett.

Hersh, R. (1997)Vhat is Mathematics Really? NY: Oxford University Press

Hoyles, C, & Kiichemann, D.Z002).St u d &nmdersdafidings of Logical Implication
Educational Studies in Mathematics, 51(3), 193-223.

Kitcher,P. (1984) The Nature of Mathematical Knowledge. NY: Oxford University Press.

Kyriakopoulos, A. (1977)Mathematical Logic: With Proofs in Mathematics. Athens
Papadimitropoulou Publishing

Lakatos, I. (1976)Proofs and Refutations. Cambridge University Press.

Lewis, C. I. (1917). The Issues Concerning Material Implicatiime Journal of
Philosophy, Psychology and Scientific Methods, 14(13), 350-356.

Mansur, M.N(2005).The paradoxes of Material Implication, Masters Thesis, Memorial
University of Newfoundland.

Marfori, M. (2010). Informal Proofs and Mathematical Rigdiiudia Logica, 96, 261-
272.

Mueller, D.J. (1975).Logic and the Ability to Prove Theorems in Geometry. Doctoral
Thesis, Florida State University.

Morou, A, & Kalospyros, N. (n.d.)The Role of Logic in Teaching, Learning and
Analyzing Proof. Retrieved fromhttps://bit.ly/2Tuz9gQ

Newell, A., & Simon, H. (1956). The LogiTheory Machine: A Compkelnformation
Processing SystertRE Transactions on Information Theory, 2(3), 61-79.

114



Athens Journal of Education February 2020

PapastavridisS. (1983). The Process of Mathematical DiscoyeryGreel. Euklides 7,
1, 74-93. Hellenic Mathematical Society.

Platt,L.J. (197). The Effect of the Use of Mathematical Logic in High School Geometry:
An Experimental Study. Doctoral Thesis, Colorado State University.

Polya, G. (1954)Mathematics and Plausible Reasoning, vol. I, Il. Princeton University
Press.

Polya, G. (1973)ow to Solve It. Princeton University Press.

Romano, D.A. & Strachota, S( 2016) . Coll ege Studentsbo

Implication,Open Mathematical Education Notes, 6, 57-64.

Rota, G.C. (1997). The Phenomenology of Mathematical Fsyrahese, 111, 183-196.

Savic, M. (2017). Does Content Matter in an Introdutm®roof Coursedournal of
Humanistic Mathematics, 7(2), 149-160.

Skliros, P. (1906)_ogic for High School Use. Athens Papaspirou Publications.

Suppes, P. (1965)he Axiomatic Method in High-School Mathematics. Technical Report
No.95, Psychology Series, Institute for Mathematical Studies in the Social Sciences,
Stanford University.

Tymoczkqg T. (1986). Making Room for Mathematicians in the Philosophy of
MathematicsThe Mathematical Intelligencer, 8(3), 44-50.

Varouchakis N., AdamopoulosL., Alexandris N., PapakostantinguD., Papamikroulis
A. (1983).Mathematics A’ Lyceum: Algebra. Athens B A qpb

Wenze] M., & Paulson L. (2006)sabelle/lar In The Seventeen Provers of the World, F.
Wiedijk (ed). Berlin: Springer.

Wiedijk, F. (2008). Formal Prodf Getting StartedNotices of the AMS, 55(11), 1408
1414.

115

Unde



Vol. 7, No. 1 Aristidou: Is Mathematical Logic Really Necessary in ...
Appendix
Questionnaire A
Consider the theorem:
The sum of any two odd integers is even
Look at the two ppofs below and answer the following questions:
Proofi:
Let x andy be arbitrary odd integers.
Then, there exist integensandn such thak = 2m + 1 andy = 2n + 1.
Adding x andy we getx +y =2m + 1) +(h + 1) = 2n +2n + 2 = 2fn+n + 1) = X,

wherek = m+n + 1.
Therefore,x +y =2k , which means that+y is even.

Proof2:

1. oddg) premise

2. oddy) premise

3. $z(x=2z+) 1, definition of odd

4. $z(y=2z+)] 2, definition of odd

5. X =2m+13, existential instantiation

6. y=2n+1 4, existential instantiation
7. Xx+y=2(m+n+1)5, 6, algebra

8. $z(x+y=22)7, existential generalization

9. everX +Y)8, definition of even

10. oddf) @Doddf) - evenk+y) 19, conditional proof

11. " X[odd(x) Doddfy) - evenk+y)] 10, universal generalization
12. " yloddx) Qoddfy) - eveng+y)] 11, universal generalization

1. Which proof from the ones above establishes the result more rigorously? Why?
2. Which proof from the ones above you understand better and you would
communicate to others? Why?

3. Which proof from the ones above prompts you to explore similar queatitghy?

4. Which proof from the ones above is more appropriate for computers? Why?
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Questionnaire B
Consider the theorem:
(a+b)?- (a- b)?’=4ab, a, breals.
Look at the two proofs below and answer the follogwjuestions:

Proof 1*3*

ab
(a+b

(a-by | —

ba

Proof2:
Using the perfect square identity twice, the-kdind side is:
(a+b)* (a- b)’=a’+2ab + b%- (a’- 2ab + b?)
= a’+2ab + b® - a®+2ab - b
= 4ab
which equals the righthand side.

1. Which proof from the ones above establishes the result more rigorously? Why?

2. Which proof from the ones above you understand better and you would
communicate to others? Why?

3. Which proof from the ones abogsompts you to explore similar questions? Why?

4. Which proof from the ones above is more appropriate for computers? Why?

13 Picture taken from https://bit.ly/2Z4N6Dx
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Questionnaire C
Consider the following valid argument:

All computer science mays are people
Some computer science majors are logical thinkers
Therefore, some people are logical thinkers

Which of the two reasonings below hel ps
validity? Why?

Reasoning1:

P

s L

Reasoning:
1. "x[C(X)- PX)] premise
2. $[C(x)aL(X)] premise
3. C(c)9L(c) 2, existential instantiation
4. C(c)- P(c)1, wiversal instantiation
5. C(c) 3, simplification
6. P(c) 4, 5, modus ponens
7. L(c) 3, simplification
8. P(c)dL(c)6, 7, conjunction
9. $X[P(x) DL(X)] 8, existential generalization
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